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Abstract 
We show that a semi-definite programming approach can  be adopted to determine 

the least order dynamic  output feedback  which stabilizes a given linear  time  invariant 
plant. The problem addressed includes as a special case, the famous static  output feed- 
back problem. 
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1 Introduction 
Consider the linear  time  invariant (LTI) plant C, 

C :  z = Az+Bu, (1.1) 
y = cz ,  (1.2) 

where A E Rnxn, B E Rnxm, and C E Rpxn. Let k n; represent the class of k-th 
order stabilizing' linear controllers for C by Cf , which  have the general form, 

'Draft 3.0. 
'All references to stability are  in the sense of  Lyapunov: the origin is the stable equilibrium  point  of 

the dynamical system z = A z  if and  only if the image  of a positive  definite matrix under the linear map 
X - -A'X - X A  is positive definite. 

. 
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.- .- Defined as. 
R" The n-dimensional  Euclidean  space. 
RnX" The space of n x rn matrices  with  entries in R .  

The space of n x n symmetric  matrices  with  entries  in R. 

with  entries in R. 

A" The inverse of the  matrix A.  

R(A) The range of the  matrix A.  
A > B The matrix difference A - B is  positivedefinite. 
A 2 B The matrix Merence A - B is positive semi-date 

A : B The parallel addition of the  matrices A and B. 
[MIA The short of the  matrix A over  the  subspace M .  

m n x n  

SRqxn The space of n x n symmetric  positive  semi-definite  matrices 

A' The transpose of the  matrix A.  

At The pseudo-inverse of the  matrix A. 

(inducing  the  psd  ordering). 

Table 1: Notation 

AK E Rkxk .  
Two major  open problems in control theory  are  stated as follows: 

1. Static Output Feedback (SOF) Problem: Find polynomial-time verifiable 
necessary and sufficient conditions on the  triplet ( A ,  B ,  C )  such that Cg is nonempty.a 

nomial time algorithm to determine the least k such that is n ~ n e m p t y . ~  
Note that  the  SOF is a special case of the  LODOF; we shall  thus refer to both  problems 
as the  OFP  (Output Feedback Problem). 

The OFP has received considerable attention in systems and  control  community 
over the last  thirty years [l], [9], [ll], (161,  [19],  [20],  [21],  [22],  [30],  [31],  [34],  (361; also 
refer to the surveys (51,  [35]. In a recent survey on the  state of systems and  control, 
the OFP has been identified as an  important  open problem in control theory [SI. The 
purpose of the present paper is to "solve" the OFP using the machinery of linear matrix 
inequalities  and semi-definite programming. 

First,  let us use the notation shown  in Table 1, and say a few words about  the 
problems which we shall encounter shortly. 

2. Least  Order Dynamic Output  Feedback  (LODOF)  Problem: Find a poly- 

'When C = I ,  a necessary and sufficient  condition L stabilizability of the pair ( A ,  E ) ,  i.e., 

rank [XI - A E ]  = n, 

where X ranges  over the eigenvalues of A with  nonnegative real parts. Similarly,  when B = I ,  detectability 
of (C, A )  provides a necessary  and  sufficient  condition  for C: to  be  nonempty. 

'Moreover, find the corresponding t-th order controller. 
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The linear matrix inequality (LMI) is the problem of finding a  linear  combination 
of a given set of symmetric matrices which is positive-definite [SI. The set of all such 
combinations,  constitute  a convex set upon  which a linear objective functional can 
be optimized. The corresponding optimization problem is  referred to as semi-definite 
programming  (SDP). Usually though the  SDP is specified by the dual  formulation of 
the problem just described, in terms of optimizing a linear functional on a convex set 
of symmetric  matrices.  The LMI and  the SDP both  admit efficient algorithms for their 
solution based on the interior-point methods. We call the LMI and the  SDP polynomial- 
time solvable in the sense that their  approximate solution can  be obtained in a number 
of steps which is a polynomial in the size of the problem description [27]. 

The rank minimization problem (RMP) is the problem of finding a minimum rank 
matrix in a convex set of symmetric matrices, i.e., 

x u  minrank X ,  

where r C sa"'" for some n. The set I' is usually described by a set of LMIs. Refer 
to  Table 2 for a summary of these matrix optimization problems. 

Some  comments on the works  which are directly related to the result which is pre- 
sented in this  paper. Motivated by the long standing difficulty  in finding a polynomial- 
time  algorithm for solving the  OFP, Blonde1 and Tsitsiklis studied the possibility of 
its NP-hardness [7]. They proved for example that  the SOF in particular is NP-hard, 
provided that  one imposes bounds on the entries of the feedback gain. The polynomial- 
time solvability of the  OFP which is proved in the present work is in  the  spirit of 
[26] and [27], where the usual notion of polynomial-time solvability of problems in dis- 
crete  mathematics is modified to account for the  fact that for continuous computational 
problems, 

0 finite encoding of the problem data and the candidate solution is not possible, 

finding an exact solution in finitely many steps is, in general, impossible. 
In  fact, what we demonstrate in the paper is that  the  OFP  admits  an  SDP formu- 

lation. 
A key step in the formulation of the  OFP as an SDP is its reduction to an RMP, as 

demonstrated by Packard et ol. [28],  [29], El Ghaoui  and Gahinet [lo], and Iwasaki and 
Skelton [17] (also refer to [33]); we go over the proof of this result  in $3. 

More than a year ago, influenced by a class of problems in the  complementarity 
theory, we realized that a class of RMPs can be solved as an SDP. This result was 
later  submitted to the IEEE Transactions on Automatic Control. As a response to 
one reviewer's comments requesting for a "control application," we came across the 
LODOF problem and showed that  the  SDP formulation of the corresponding RMP 
gives polynomial-time computable lower and upper bounds for the least order  stabilizing 
dynamic  output feedback [23], [24]. A few technical details however, prevented us from 
proving that  the OFP admitted a polynomial-time solution. The  contribution of the 
present paper is to collect the necessary steps to resolve  these technical issues and  to 
show that in fact, the OFP is polynomial-timesolvable. The rest of the  paper is devoted 
to  the proof of this  statement which we  now express as a theorem. 

and, 
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m: Given A; E S t m x n  ( i  = 1 , .  . . , p ) ,  find x E RP such that, 

SDP (Primal Formulation): Given C E gt"'", Ai E S t m x "  and bi E R ( i  = 1 , .  . . , p ) ,  find 
X E S t n x n  as a solution to, 

minx Trace CX 
Trace AiX = b; (1 , .  . . , p ) ,  

x 2 0. 

SDP (Dual  Formulation): Given c E RP, Ai E S t n x n  ( i  = 1 , .  . . , p ) ,  find x E Rp as a 
solution  to, 

min c'x 
z 

D 

RMP: Given a convex set r E S t m x " ,  find X E S t m x m  as a solution  to, 

minrank X 
X 

x E r. 

Table 2: LMI, SDP, and RMP 
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Theorem 1.1 The OFP can be solved as an SDP. Thus the OFP is polynomial-time 
~ o l v a b l e . ~  

2 Preliminaries 
In this section we go over the concepts which are subsequently used to prove Theo- 
rem 1.1. To make the paper self-contained, a few  known results are stated  and proven 
along the way. 

Given A, B E S t n x " ,  suppoee that  the eigenvalues of A, &(A) (i = 1 , .  . .n), and B ,  
Ai(B) ( i  = 1 , .  . . n), all real, are indexed in a non-deereasing order, 

Then (151, 

moreover, for all matrices M E Rpx", 

A _< B =$ MAM' < MBM', (2.7) 

implying that if M is invertible, then MAM' 5 MBM' if and only if A 5 B. 
Given A ,  B E st;"", their parallel addition A : B is defined as [3], 

A : B := A - A ( A  + B)+A,  

and satisfies the properties, 

O < A : B < A ,   O < A : B I B .  

For A E SI.:'" and a subspace M 2 R", the  short of A ie defined as [2], 

[MIA := max{B E I B < A ,   R ( B )  E M } ;  

here the  max always exists [2]. For A ,  B E sa;"", define the  matrix  interval, 

A ( A , B ) : = { X I O L X _ < A , O < X < B } .  

An extreme matrix of A ( A ,   B )  is a matrix X' E A ( A ,  B )  which is not  majorized  (with 
respect to  the psd ordering) by any other matrix in A ( A ,   B ) .  In [4], Ando  has shown 
that given A ,  B and a matrix C E A ( A ,  B ) ,  an extreme  matrix of A(A, B ) ,  2 ,  can be 
found by letting N = R(C),  

YO = -C + [NIB, and 20 = -C + [ N A ,  

'In the same sene  that  the LMI and the SDP are polynomial-time solvable  (261. 
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and  then  successively  iterating  upon  the  following two equations, 

and finally letting, 

In this caee we write, 

= A g ( A ,  B);  

note  that C 5 A Z ( A , B ) .  Provided that the positive semi-definite matria A ,  B,C 
above  have the form, 

observe that, 

Let I' be  a nonempty subset of my". If  for all A ,  B E r, A(A,  B)  f l  r is nonempty, 
then I' is called a hyper-lattice [24]. If  there exists a matrix X such that X 5 Y for all 
Y E I', then we call X the  (unique)  least  element  of r [24]. 

Having stated  some basic  matrix  theoretic facts we  now  recall the  following results 
on  matrix inequalities. 

Proposition 2.1 The  following  two  statement8 are equivalent: 
1. A X + X A ' + Q c O .  
2. For all a > 0, (a1 - A ) X ( a l  - A') - (aI + A ) X ( a l  + A') - 2aQ > 0. 

Proof: The proposition can be  verified  by simply expanding the left hand side of the 
second inequality above and dividing  both  sides by a > 0. 

0 

Lemma 2.2 ((121) Let M E S R n x n ,  P E Rnxp, and Q E Rqxn. Then  fhe  following 
statements  are  equivalent: 

1.  There  exists  a  matriz K E Rpxq such  that, 

A4 + P K Q  + Q'K'P' c 0. 

2. There  ezists  a  positive  number 4 such  that for  all 7 1 4, 

M c YPP' ,  and M < 76'8 
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Lemma 2.3 ((281) Let X E S R N X N ,  X nonsingular,  and n 5 N .  Let us partition X 
a n d  ,Y" as, 

R *  s *  

where R and S a n  n x n symmetric  matrices.  Then X > 0 if and  only if R I  
L - . I  

and rank 1 1 5 N .  Conversely, if then are  matrices n x n symmetric matrices 
L - J  

R and S such fhaf [ I ] 2 0 and rank [ ] 5 N ,  fhen  there ezist.9 a 

nonsingular X E S a t N x N  such  fhat, 

R I  

R *  
* *  

Proposition 2.4 Let I' be a  nonempty  subset of St:'". If r admits  a  least  element, 
that  least  element has a  minimal rank in r. 
Proof: Let X be  the least element of r and assume that there exists Y E such that 
rank ( Y )  < rank ( X ) ,  i.e.,  there exists an index j such that 0 = Aj(Y) < Aj(X). 
However, X 5 Y ,  and by (2.6), Aj(X)  5 Aj(Y), thus establishing a contradiction. 

0 
Lastly, we state the  Kakutani's fixed point theorem and a related definition for 

completeness. 

Definition 2.1 Let S be a  closed bounded convez set in an  Euclidean  space  and R(S) 
be the  family of all closed  convex  subsets of S. A point-to-set  mapping z -+ f(t) from S 
into R(S) is called  upper  semi-continuous if zn + a?, y,, E f(zn), and y,, + y*, imply 
that y* E f(z'). 

Theorem 2.5 ([18]) I f z  + f(z) is an  upper semi-continuow  point-to-set  mapping of 
a  bounded  closed  convez set S in an  Euclidean  space  into R(S),  then  there ezists 3 E S 
such fhaf 5 E f ( 2 ) .  

3 Proof of Theorem 1.1 
The proof of the theorem proceeds along the following lines. In $3.1 it is first shown 
that  an RMP of the form (1.5) whose  feasible set is a hyper-lattice can  be solved as an 
SDP (Lemma 3.1). The OFP is then shown to be equivalent to an RMP (Lemma 3.2) 
(the main part of this result has  been  proven (or stated) in [lo], and [17], and [29]). 
After stating some related technical issues  in $3.2, we proceed to prove that the feasible 
set of the corresponding RMP is a hyper-lattice in $3.3 (Lemma 3.8), thus completing 
the proof of the  theorem. Some of the related technical issues are gathered in terms of 
various propositions in $3.2. 
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3.1 
In subsequent  sections we assume that  the feasible seta of the SDPs or  the RMPs me 
nonempty;  note that  the feasibility of an SDP, or an RMP whoee  feaaible set is defined by 
a set of LMIs, can always  be  checked via the interior point method in polynomial-time. 

Lemma 3.1 Let I' C be nonempty and  compact. If r is a hyper-lattice  then, 

X *  := argmin Trace X ,  xer 
k of minimal rank in r 5  

Proof.. The  matrix X' exists by the compactness of r and continuity of the  trace 
functional. Let Y E I' be  arbitrary,  and Z E A(X*, Y ) .  By optimality of X * ,  
Trace ( X *  - 2) 0. By the choice of 2 however, Dace (2 - X * )  5 0, and thus 
*ace ( X *  - 2) = 0. Since X *  - 2 2 0 and Trace (X' - 2) = 0 , Z  = X * .  Thereby, 
X' 5 Y ,  for all Y E r, and X' is the least element of r. In view of Proposition 2.4, 
X' has  minimum  rank in I'.# 0 
Lemma 3.2 ([lo], [17]) There ezisfs 4 > 0 such that for every 7 >_ 4, the OFP can 
be written  as  the  following  optimization  problem, 

AX + XA' < 7BB', 
A'Y + Y A < rC'C, 

(3.10) 

(3.11) 

(3.12) 
(3.13) 

Proof: Combining  the dynamics of the  plant (1.1)-(1.2) and that of the controller 
(1.3)-(  1.4), one  obtains, 

[ f ]  = [ BKC 
A + BDKC BCK 

A K  

A 0  O B  

where, 

A 0  O B  o z  

(3.14) 

'In fact,  the proof establishes a stronger statement: every  nonempty  compact hyper-lattice admits a least 
element which can be found by minimizing the trace functional over it. 

'When r is a set defined by LMIs and the least element (and thus the minimum rank solution) ia 
found approximately using a numerical method, care  must  be  given in the determination of the rank of the 
corresponding approximate least element. 
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2 E R("+k)x("+k). Note how (3.14) reduces to the static output  feedback  case  when 
6 = 0. 

Now, according to the  Lyapunov's stability criterion,  the  origin is the stable equi- 
librium  point of the the closed loop system (3.14) if  and  only if the following  matrix 
inequalities are feasible, 

(AI + ZK(?)Z + Z ( i  + SK(?)' 
= (22 + 22)  + ( B I K E )  + (2f?'K%') < 0, (3.15) 

h o .  (3.16) 

In  view of Lemma 2.2, (3.15)-(3.16) is equivalent to the existence of y > 0, such that 
the  following  matrix inequalities  are  feasible, 

Note  that these  inequalities are  nonconvex  in 2;  in  fact  they  are  in the  form of a bilinear 
matrix inequality (BMI) [25],  [32]. Letting P = 2-l and  using (2.7)' we conclude that 
(3.15)-(3.16) is equivalent to, 

(3.17) 

(3.18) 
(3.19) 
(3.20) 

We notice that the LMIs (3.17)-(3.19), with an additional  non-convex  constraint (3.20), 
are in terms of the matrices h, 5, and c. Since  these  matrices contain aero blocks, 
(3.17)-(3.20) can be simplified  and  rewritten in terms of the original triplet (A,  B ,  C) 
aa we now proceed to show. 

Let 2 = [ x * * * ] m d p =  [ * * 1. If (3.17)-(3.19) hold, then a simple block Y *  

matrix multiplication shows that, 

A X  + XA' < -yBB', 
A'Y + Y A  < rC'C, 

x > o l  
and  according to Lemma 2.3,  (3.20) implies, 

(3.21) 
(3.22) 
(3.23) 

(3.24) 

Thus the feasibility of (3.17)-(3.20) implies  that of (3.21)-(3.24). 
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On the  other  hand, (3.24) and Lemma 2.3 imply the existence of the positive definite 

matrices 2 = [ ] and Y = [ L, 1, such that 2? = I .  Moreover since, 
X M  - 

(3.17) holds for some 71 > 0. Similarly (3.18) holds by invoking (3.22) and Lemma 2.3, 
and choosing the appropriate ya > 0. It now  suffices to let 7 be equal to r n a x ( y 1 , ~ ~ ) .  
Thus  the feasibility of (3.21)-(3.24) implies that of (3.17)-(3.20) for some y > 0. Con- 
quently (3.17)-(3.20) and (3.21)-(3.24) are equivalent for an appropriately choeen 7 > 0. 

n 
U .  

Proposition 3.3 Given  the  matrices X and Y as solutions to the  optimization  problem 
(3.10)-(3.13), the  corresponding stabilizing static or least order  dynamic  output  feedback 
controllers can be found wing an LMI. 

Proof: Note that solving (3.15)-(3.16) for 2 and K is equivalent to  the OFP. Knowing 
d? however, reduces (3.15)-(3.16) to an LMI. It is thus sufficient to show that 2 can 
be constructed  from  the  optimal X and Y of (3.10)-(3.13). The construction  pian is 
implicit  in  Lemma 2.3: given X and Y ,  2 is such that, 

thereby, 

Since [ I ] 2 0, X - Y-' 2 0. Let [ U1 Ua ] [ ] [ 2 ] be  the singular 

value decomposition of X - Y - l ,  with U1 and Ua symmetric,  and S diagonal  with 

X I  s o  

positive entries; set, 
- 

3.2 
In this  section, we gather few technical issues related to  the final proof of Theorem 1.1 
in 53.3. These  results are concerned about establishing that  the feasible set of the  RMP 
which corresponds to the OFP can  be represented as a hyper-lattice. 
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Proposition 3.4 There  ezist q > 0 and 4 > 0 3uch that for every y 2 4 the OFP can 
be wr i t t en  as the followany oplrrrrrxtion  problem, 

A X   + X A '  < rBB', 
A'Y + Y A  < yCC, 

(3.25) 

(3.26) 

(3.27) 
(3.28) 

(3.29) 

Pruofi Given the feasibility of (3.11)-(3.13), the wristence of  the positive number q is 
clear. 

0 

Proposition 3.5 There  ezist q > 0, e > 0, and 5 > 0, 3rd that fur every 7 2 f the 
OFP can be unitten as the following optimization problem, 

Frank2 (3.30) 

z - N Z N ' + Q 7  2 0 ,  (3.31) 

(3.32) 

where, 

= [; ;] 
N = [  ( a I  - A)"(al+ 0 A )  (61 - A')-'(bI 0 + A') ' 1 

(3.34) 

(3.35) 

07 = 27 [ 0 b(bI - A)"C'C(bI - A')-' 
a(a1- A)"BB'(aI - A)' 0 

(a1  - A ) X ( a I  - A)' - (uI  + A ) X ( d  + A)' + 2ayBB' > 0. (3.38) 

Choose a > 0 such that aI - A is nonsingular  and define, 

N1 = aI - A ,  and M I  = a I  + A.  
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Thus (3.38) is equivalent to, 

X - NaXNi + 2ayB,B: > 0, 

where, 

N a  = N:‘Ml, B a  = N,”B. 

Similarly (3.28) can be  written a s ,  

where, 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

Rewriting (3.25)-(3.29) by letting 2 = [ ‘f 1, one obtains the following RMP, 

min rank 2 z 
Z - NZN’ + (2700 - J + NJN‘  - € I )  2 0, 

qI  1 1 0, 
for some c > 0 and q > 0. Note that the matrices N and QO are block diagonal. Let, 

Q7 := 2700 - J + NJN‘ - <I.  (3.45) 

0 
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Proposition 3.6 
for all  matrices X 

Let the matrices N and Q, be defined as in (.7.3?5) and (.3..37). Then 
of the form, 

x = [  I x1 I ] > 0  - 

and  every c > 0, there  erist  positive  scalars a, b, and  symmetric  matrices U1 and Uz,  
such  that, 

P m f i  The quadratic term in (a, b) in the inequality (3.46) is of the form, 

(3.46) 

Thus if [ 7 i2 ] 2 0, for  every > 0, there exist a, b > 0 such that (3.46) holds  for 

some  matrix  of  the form 0 

Corollary 3.7 There  exist  posilive  scalars a, b, q ,  c, 7 > 0, and sgmmetric  matrices 
U1, U2, such  that for every 7 2 4, the OFP can be wn'tten as the  following  optimization 
problem, 

minrank 2 

Z - N Z N ' + Q , > _ O ,  
z (3.47) 

(3.48) 

(3.49) 

(3.50) 

w h e n  the  matn'ces N and Q7 a n  as  defined  in (3.35) and (3.37), nqec t i ve l y .  

Proof: In view of Proposition 3.6, note  that a,b > 0 and symmetric matrices can be 

chosen  such that, for  every 2 of  the form * I  

(3.51) 

Given that for a feasible 2, 2 >_ N Z N '  - Q7, (3.50) is automatically satisfied. 
0 
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3.3 

With  matricea N (3.35), Q, (3.37), k e d  7 > 0, and U = [ i2 ] ae in corol- 

lary 3.7, define the  set, 

The following lemma connects  together all the results which we have  developed so far 
for the solution of the OFP. 
Lemma 3.8 For a Fed y > 0, and .dtable choicen of o and b, I' (3.5t) ia a h g p m  
lattice. 

Proof: Let X ,  Y E l'; define the set, 

& ( X ,  Y )  := ( 2  E A(X, Y )  1 2 = [ : i2 ]I GA(X1Y) .  

Note  that A(X, Y )  is nonempty (in contains V ) .  

one has, 
For all 2 E A(X, Y ) ,  and appropriately chosen a and b (refer to Proposition 3.6) 

X 2 N X N " Q ,  2 N Z N l - 9 ,  20, 

a d ,  

Y 2 N Y N ' - Q ,  2 N Z N ' - Q ,  2 0 .  

By the  structure of the N we conclude that, 

for some  matrices 21 and 23, since, 

N Z N '  - 0, = NZoN' + NJN'  - (2700 - J + N J N '  - ' I )  
= NZoN' + J - 27Q0 + cI .  

Let) 

Note that W E A ( X , Y )  (refer to $2). Thus, for  every 2 E A(X,Y) ,  there exists 

W = [ w1 ] E A ( X ,  Y )  such that, I'  w2 
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and let Z k  4 Z * ,  and W b  -+ W’. Define  the map, 

M ( Z , ,  W b )  := W b  - NZkN’ + 91. 

The  map M is linear on x S t n x n  and thereby  cuntinuous. Since the  cone of 
poeitive semi-dcfinite matrices is c ioeed ,  

andl 

hence W’ E f(2’). 
Note also that A(X, Y )  is a bounded  closed  convex set. Consequently  by the Kaku- 

tani’s Fixed  Point  Theorem  (Theorem 2.5), there exists a  matrix 2 E A(X, Y )  such 
that, 

W’ 2 NZ’N‘ - Q7; 

2 =  f ( Z ) ,  

We have  thus  proved  the  following statement: for  appropriate scalars o,b > 0, the 
feasible set of the RMP which  corresponds to the OFP ia a hyper-lattice.  Coneequently, 
according to Lemma 3.1, the OFP can be  solved aa an SDP. The SDP formulation of 
the OFP is of the form, 

min Trace X 

X - N X N ‘  +Q7 2 0 ,  
x,-! >o 

x 2 0; 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

note  once again that the  parameters a,b > 0 are  hidden  inside  the matrix N (3.35). 
The parameter 7 > 0 in Qr (3.37), on  the  other  hand,  can be iterated upon or fixed to 
some large positive value. 
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Rewriting the above SDP in terms of the  original triplet (.4, B,  C ) ,  one obtains, 

minTrace X + Y 
x , y  (3.58) 

XA’ +AX ,< 7BB’ + “ (~~1-  uA‘ - UA + AA’), 

A’Y + Y A 5 7C’C + z(PZ - 6A - bA’ + AA’), 

-€ 

2a (3.59) 
-€ 

(3.60) 

(3.61) 

What we  have  proved in the  paper is that for a suitable choice of u and b, the above 
SDP ie equivalent to OFP. 

We demonstrate.  the applicability of  the propoead SDP approach to the OFP via 
some  examples. 

4 Examples 
We used  the LMITOOL, developed by  El Ghaoui,  Delebecque,  and  Nikoukhah [13] (an 
interface to the SP Package of Vandenberghe  and Boyd), to solve the SDP formulation 
of  the  OFP proposed  in  the  paper.7 

Our  first example is the 2-mass spring system as considered  for example in [14], 
where  two bodies  with equal unit mass are  connected  by a spring  with unit stiffness. It 
is assumed that  the problem is non-collocated, i.e., that the  control force acta on  one 
body and the position is measured on the other. The system can  be  described  in the 
form of (1.1)-(1.2) with, 

0 1 0  

A = [  :l 0 0 1  . ] ,  B = [ i ] ,  and C = [ O  1 0 0 1 .  
-1 0 0 

It is known that a second order  controller is a minimum  order  dynamic output feedback 
which stabilizes this  system. We formulated this LODOF problem as an SDP of the form 
(3.54)-(3.57) by setting u = b = lo6, and e = The solution of  the corresponding 
RMP is found to  be, 

X’ = 

- 0.9277 
0.5462 

-0.0010 
-0.0094 
1 .oooo 

0 
0 
0 

0.5462 
1.8685 
0.0042 

-0.0091 
0 

1 .oooo 
0 
0 

-0.0010 
0.0042 
0.6532 

-0.3815 
0 
0 

1 .oooo 
0 

-0.0094 
-0.0091 
-0.3815 
1.3224 

0 
0 
0 

1 .oooo 

1 .oooo 
0 
0 
0 

1.3224 
-0.3815 
-0.0091 
-0.0094 

0 
1 .oooo 

0 
0 

-0.3815 
0.6532 
0.0042 

-0.0010 

0 
0 

1 .oooo 
0 

-0.0091 
0.0042 
1.8685 
0.5462 

0 
0 
0 

1 .ooo 
-0.0094 
-0.0010 
0.5462 
0.9277 

‘We have recently noted that, in some cases, a non-interior  point based algorithms also performs well  for 
solving the SDP formulation of the OFP. 
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the associated vector of eigenvalues is, 

A = 

0.0000 
0.0000 
0.0083 
0.0172 
2.1692 
2.1635 
2.5911 
2.5943 

1 

we conclude that  the minium order stabilizing dynamic output fix&& for the two 
mass-spring system is in fact two.* 

Our &nd example is based on a random selection of the triplet (A,  B,  C )  in (1.1)- 
(1.2): 

A =  

B =  

-0.9015 
5.2170 

-3.5108 
-4.0187 
0.1723 
0.6402 
3.3423 

-2.3254 
-0.4051 
0.2923 
2.5659 

-0.4578 
-1.6108 
-2.6695 
-0.7597 
-0.6747 

- 1.9020 
-2.7524 
2.3465 
1.7917 

1.2032 
-1.3419 
-0.8906 

-2.0873 

-1.1717 
2.0329 
0.9685 
0.6703 
0.4201 

1.6859 
0.0279 

-2.8728 

1.2065 
2.1887 
- 1.2270 
-3.7214 
-2.2474 
0.7113 

-2.1090 
- 1.9334 
-0.9020 
-2.0533 
0.0891 
2.0871 
0.3651 
0.8461 

1.0307 
-0.1845 

0.4029 
1.6255 
- 1.5700 
-4.4778 
-2.0884 
-0.6443 - 1.7480 
-2.3926 

0.5304 
3.6976 

-2.4693 
-3.8795 
-0.5313 
1 .O924 

-0.8293 
-2.7666 

-2.1496 
-7.5229 
3.7815 
2.7415 

-1.8846 
-3.5431 
-1.7091 
0.8354 

-0.7712 
2.3800 

1.1050 
2.7407 
0.4691 

1.8646 

-0.8531 

-0.4512 

-2.0484 -, 
-2.5410 
1.4200 
2.0385 

1.7167 
-0.8183 ' 

-1.6132 
-2.2624 

c =  [ -1.5276 0.5262 0.1988  0.0322  -1.2992 1.8175 -1.0107  0.6912 
0.9649  -0.1845  1.5904  0.8892  1.1826  -0.5843  -0.9605  -0.7586 1 ' 

We note  that  the minimum order stabilizing dynamic output feedback  for a generic 
system is zero, i.e., for random choices of A,  B,  and C ,  static  output feedback can be 
used to stabilize the system. The solution of the corresponding RMP was found using 

*Since n = 4 and n + k = 6. 
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the SDP formulation (3.54)-(3.57) with the following  vector of  eigenvalue^,^ 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 
O . o o 0 0  
2 * 0000 
2.0000 
2.0000 
2.oooo 
2 .OoOo 
2 .oOOo 
2.1786 
2.1758 , 

A =  

Thus, a static  output feedback can be  used to stabilize  this system.'0 
Note that in view  of Proposition 3.3, having the pair ( X , Y )  (the upper left and 

lower right  submatricea of X * ) ,  the corresponding controller for both  examples  above 
can be found via solving the LMI (3.15). 

5 Concluding Remarks 
It is  shown that  the RMP resulting from the least order dynamic output feedback can 
be  solved as a semi-definite program. As an  immediate consequence  of this  result,  it 
is concluded that  the OFP is polynomial time solvable, thus settling  two famous open 
problems in control theory. 
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